ORIGINAL PAPER

A DFT study on the sensing behavior of a BC₂N nanotube toward formaldehyde

Maziar Noei · Ali Ahmadi Peyghan

Received: 8 February 2013 / Accepted: 12 June 2013 / Published online: 26 June 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract We investigated the viability of using a BC₂N nanotube to detect formaldehyde (H₂CO) molecule by means of B3LYP and M06 density functionals. The results indicate that the molecule is weakly adsorbed on the intrinsic BC₂N nanotube releasing energy of 0.8 kcal mol⁻¹ (at B3LYP/6-31G(d)) without significant effect on the HOMO-LUMO energy gap and electrical conductivity of the tube. Thus, H₂CO cannot be detected using this intrinsic nanotube. To overcome this problem, a carbon atom of the tube wall was substituted by a Si atom. It was demonstrated that the Sidoped tube cannot only strongly adsorb the H₂CO molecule, but also may effectively detect its presence because of the increase in the electric conductivity of the tube.

Keywords Band gap \cdot B3LYP \cdot DFT \cdot Nanostructures \cdot Sensor

Introduction

Carbon nanotubes (CNTs) are very prevalent in today's world of research and their unique properties have prompted interest to produce inorganic nanomaterials [1–7]. The similarity between graphite and the hexagonal boron nitride (h-BN) leads to the production of boron nitride nanotubes (BNNTs). Contrary to CNTs, the electronic properties of BNNTs are almost independent of the tube chirality and its diameter. The BNNTs present partial ionic B-N bonds and form a slight buckling on the surface that may be helpful for the adsorption of molecules which interact weakly with CNT

M. Noei

Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

A. A. Peyghan (🖂)

surfaces. Another important difference resides in the fact that while CNTs are easily oxidized, BNNTs present strong resistance to oxidation [8]. Similar to h-BN, the mixed $B_xC_yN_z$ compounds (x, y, and z indicate the stoichiometry) are stable in the hexagonal structure and they were predicted to form one- and two-dimensional nanostructures [9–11]. The BC₂N stoichiometry is believed to be one of the most stable forms of the ternary BCN layers and nanotubes [12]. Considerable experimental efforts have been devoted to the synthesis of $B_xC_yN_z$ nanotubes, and they have been successfully obtained by electrical pyrolysis, laser ablation, hot-filament chemical vapor deposition, and the template route [13–16].

As an important industrial chemical, formaldehyde (H₂CO) is utilized in the manufacturing of building boards, plywood, and lacquer materials [17, 18]. Moreover, it is an intermediate in consumer products, such as detergents and soaps, and also it is used in pharmacology and medicine because of its sterilization property. It is known that formaldehyde gas can cause asthma-like symptom and induce central nervous system and immune system damage, as well as blindness and respiratory disease [19, 20]. The maximum legal levels in dwellings and work places are limited in most countries. The formaldehyde vapors can cause various effects to human health on the basis of the air concentration. Therefore, effective methods to monitor formaldehyde have been demanded for atmospheric and environmental measurement and control. People have been looking for good materials as gas sensors with high sensitivity for a long time. Basically, it is expected that the adsorption of gas molecules on the sensors is stable and the changes of the conductivity should be observable. However, most of gases are found physisorbed on suspended intrinsic nanotubes [21–23]. On the contrary, the dopants and defects in nanotubes can strongly enhance the adsorption of molecules [24, 25], indicating that doped atoms and defects play important roles in the applications of them. In the present work, within the density functional theory (DFT) framework, the interaction of H₂CO with BC₂NNTs will be investigated based on analyses of structure, energies, electronic properties, etc. We are interested

Central Tehran Branch, Islamic Azad University, Tehran, Iran e-mail: ahmadi.iau@gmail.com

in whether there is a possibility of BC_2NNTs serving as chemical sensors for detecting H_2CO molecule, and if not, can we find a method for improving the sensitivity of BC_2NNTs to H_2CO ?

Computational methods

Geometry optimizations, natural bond order (NBO) analysis, and density of states (DOS) analysis were performed on a (8, 0) zigzag BC₂NNT (constructed of 24 B, 24 N and 48 C atoms), and different H₂CO/BC₂NNT complexes by using B3 (Becke three parameter exchange functional [26] and the correlation functional of Lee, Yang and Parr (LYP) [27]) with 6-31G(d) basis set as implemented in GAMESS suite of program [28]. Default convergence tolerances were used. B3LYP is a popular functional which has been commonly used for nanostructures [29-32]. The length and the diameter of the optimized pure BC₂NNT were computed to be about 11.42 Å and 6.22 Å, respectively. In order to reduce the boundary effects, atoms at the open ends of the tube were saturated with hydrogen atoms. The adsorption energy (E_{ad}) of a HCN molecule on the tube is obtained using the following equation:

$$E_{ad} = E \left(tube / H_2 CO \right) - E(tube) - E(H_2 CO) + E_{BSSE}$$
(1)

where E (tube/H₂CO) is the total electronic energy of mentioned molecule adsorbed on the BC₂NNT surface, and E (tube) and E (H₂CO) are the total electronic energies of the tube and a molecule, respectively. E_{BSSE} is the basis set superposition error (BSSE) corrected for the all interaction energies. The BSSE was obtained using counterpoise method [33]. By the definition, a negative value of E_{ad} corresponds to exothermic adsorption. The canonical assumption for Fermi level (E_F) is that in a molecule (at T=0 K) it lies approximately in the middle of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy gap (E_g). It is noteworthy to mention that, in fact, what lies in the middle of the E_g is the chemical potential, and since the chemical potential of a free gas of electrons is equal to its Fermi level as traditionally defined, herein, the Fermi level of the considered systems is at the center of the E_g .

Results and discussion

H₂CO adsorption on pristine BC₂NNT

At first, the accuracy of the method used in this work has been tested initially to describe the properties of H₂CO molecule. The bond length of individual C-H and bond angle of H-C-H in free H₂CO are about 1.11 Å and 115°, which are in good agreement with the experimental values of 1.01 Å and 118° [34], respectively. In Fig. 1, we have shown the side view of the optimized structure (partial) of the BC₂NNT, where four types of bonds, namely B-N, B-C, N-C and C-C, can be identified with corresponding lengths of 1.46, 1.52, 1.44 and 1.36 Å, respectively. There are two types of carbon atoms in the BC₂NNT; C₁ is a carbon atom that is bonded to two B atoms and one C atom, while C₂ is a carbon atom that is bonded to two N atoms and one C atom. In the C–C bonds, the C₁ atoms are relaxed outward while the C₂ atom is relaxed inward of the tube surface.

In order to obtain stable configurations (local minima) of single H_2CO adsorbed on the BC₂NNT, various possible initial adsorption geometries including single (hydrogen, carbon or oxygen), double (H–C or C–O) and triple (H–C–H or H–C–O) bonded atoms close to B, N, C₁ and C₂ atoms are considered. However, only one local minimum structure was obtained after

Fig. 1 Optimized structure (partial) of BC₂NNT and its density of states (DOS). Distances are in Å

Fig. 2 Model for stable adsorption state for a H₂CO molecule on the pristine BC₂NNT and its density of states (DOS) plots. Distances are in Å

the relaxation process (Fig. 2). In this configuration, H₂CO molecule was located on the top of a boron atom of the tube wall from its oxygen head and the corresponding calculated E_{ad} value is about -0.8 kcal mol⁻¹. The less negative E_{ad} of H₂CO on pristine BC₂NNT in this structure reveals the physical nature of the interaction. The interaction distances of B... O is about 2.39 Å and a small Mulliken charge of 0.043 *e* is transferred from the molecule to the tube (Table 1). It is worth saying that other initial configurations re-oriented to this stable configuration.

To investigate the effect of adsorption process on the electronic properties of pristine BC₂NNT, the DOS plots were calculated for the tube and H₂CO/tube complex. For the bare BC₂NNT (Fig. 1), it can be concluded that it is a semiconducting material with an E_g of 2.57 eV. By referring to Fig. 2, both conduction and valence levels slightly move to higher

energies, so that E_g of the tube increased from 2.57 eV in bare tube to 2.47 eV for H_2CO/BC_2NNT complex because of charge transfer to the tube. This change in electronic property is negligible indicating that BC_2NNT is still a semiconductor after H_2CO adsorption. Thus, we conjecture that the electronic properties of pristine BC_2NNT are insensitive to the H_2CO molecule.

Similar to results of Zhang et al. [35] about pristine BNNT, the electronic properties of BC₂NNT are insensitive to H₂CO molecules. Unlike BC₂NNTs and BNNTs, conductivity of pristine SiC nanotubes (SiCNTs) is affected by formaldehyde, so that with increasing the coverage of H₂CO molecules, the band gap of SiCNT is gradually decreased, thereby increasing its conductivity. It is expected that SiCNT could be a promising gas sensor for H₂CO molecule [36].

Table 1 Calculated adsorption energy of a H_2CO (E_{ad} , kcal mol⁻¹), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), Fermi level energies and HOMO-LUMO energy gap (E_g) for pristine and Si doped BC₂NNT at B3LYP/6-31G(d). Energies are in eV

System	E _{ad}	$^{a}Q_{T}\left(e ight)$	E _{HOMO}	E_{F}	E _{LUMO}	Eg	$^{b}\Delta E_{g}(\%)$
BC ₂ NNT	_	_	-5.41	-4.12	-2.84	2.57	_
H ₂ CO/BC ₂ NNT	-0.8	0.043	-5.24	-4.00	-2.77	2.47	-3.9
Si ₁ -BC ₂ NNT	_	—	-5.29	-4.08	-2.87	2.42	-
А	-3.3	0.178	-5.31	-4.07	-2.48	2.47	+2.0
Si ₂ -BC ₂ NNT	_	—	-5.25	-4.08	-2.91	2.34	-
В	-23.2	0.208	-5.06	-4.70	-4.25	0.71	-69.6

^a Q is defined as the average of total Mulliken charge on the molecule

^b The change of HOMO-LUMO gap of tube after H₂CO adsorption

H₂CO adsorption on Si-doped BC₂NNT

In the next step, Si-doped BC₂NNTs have been built in such a way that either a C_1 or a C_2 atom is substituted by a Si atom. When a C_1 was replaced by a Si (called Si₁-BC₂NNT, Fig. 3a), the E_{dop} was calculated to be +6.47 eV, but that was found to be about +3.76 eV for Si2 doping process (called Si2-BC₂NNT, Fig. 3b). These positive values indicate that both of the doping processes are endothermic and also suggest that the C₂ doping may be a more energetically favorable process than C₁ doping. Substituting the C atoms by the impurity of Si, geometric structure of the BC₂NNT is dramatically distorted, especially in the case of Si₁-BC₂NNT. In this structure, the Si impurity is projected out of the tube surface to reduce stress because of its larger size compared to the C atom. The calculated bond lengths are about 1.79 and 1.95 Å for the Si1-C2 and Si1-B bonds, being much longer than the corresponding C_1 - C_2 bonds in the pristine tube (Fig. 3a). Also, the B-Si₁-B angle in the doped tube is about 90° which is smaller than B–C₂–B in the pristine one (113°). NBO analysis suggests that it can be attributed to the change of doped atom hybridization from sp² to nearly sp³. Calculated DOSs for both of the Si-doped BC₂NNTs are shown in Fig. 3, indicating that their E_g values are reduced to 2.42 and 2.34 eV compared to the pristine BC₂NNT. The DOS plots clearly show that the Sidoped BC₂NNTs are still semiconductor with a defect-related gap state.

Subsequently, we have explored H₂CO adsorption on both Si-doped tubes by locating the molecule above the Si atom with different initial orientations including H, C, or O atom of the molecule being close to the Si atom. We identified one distinct adsorptive configuration of H₂CO for each Si-doped BC₂NNT, namely **A** and **B**, as shown in Fig. 4. In both of these configurations, H₂CO molecule was located on the top of the doped Si atom from its oxygen head. The adsorption behavior of H₂CO on the Si-doped tubes is significantly different from that on the pristine BC₂NNT. Configuration **B** gives rise to an E_{ad} of -23.2 kcal mol⁻¹, which is more negative than the E_{ad} values for configuration **A** (-3.3 kcal mol⁻¹). From the above results, it is clear that the reactivity of

the BC₂NNT toward the H₂CO molecule presents dramatic changes before and after the doping with the Si atom. In the doped BC₂NNT, the Si impurity Si₁ or Si₂ plays a crucial role in capturing the H₂CO molecule. In Table 1, we have summarized the results for E_{ad} , charge transfer, and E_{g} for H₂CO adsorption on the Si-doped BC₂NNTs.

In configuration A (Fig. 4), the oxygen atom of H_2CO molecule is collated on the top of the impurity Si₁ atom with the bond length of 2.48 Å. After the adsorption process, the length of Si₁-C₂ and Si₁-B bonds attached to molecule is changed to 1.78 and 1.93 Å, respectively. Calculated DOS plot (Fig. 4a) shows that the H_2CO adsorption through configuration A has no sensible effect on the electronic properties of the BC₂NNT, so that the E_g of the tube has a

negligible change from 2.42 to 2.47 eV. In the most stable configuration (**B**, Fig. 4), a net charge of 0.208 *e* was transferred from the molecule to the tube and corresponding bond lengths of Si₂-C₁ and Si₂-N are 1.71 and 1.74 Å, respectively. These data indicate that the H₂CO molecule undergoes strong chemisorption on the Si₂-BC₂NNT. As shown in Fig. 4b, the distances between the O atom of H₂CO, and the Si₂ atom of the tube is 1.87 Å.

Unlike configuration **A**, the DOS plot of configuration **B** shows that the electronic properties of the nanotube are very sensitive to the H₂CO adsorption. By referring to Fig. 4b, the DOS near the conduction level has a distinct change compared to that of the doped tube, but valence level almost remains constant. The E_g was also decreased from 2.34 to

Fig. 5 The LUMO profile of H₂CO/Si₂-BC₂NNT

0.71 eV after the adsorption of H_2CO molecule. Calculated profile of LUMO for configuration **B** (Fig. 5) demonstrates that the LUMO has shifted on the adsorbed formaldehyde, while the HOMO has remained on the tube surface. It is well known that the E_g (or band gap in bulk materials) is a major factor determining the electrical conductivity of a material and there is a classic relation between them as follows [37]:

$$\sigma \propto \exp\left(\frac{-E_g}{2kT}\right) \tag{2}$$

where σ is the electrical conductivity and k is the Boltzmann's constant. According to the equation, smaller E_g at a given temperature leads to larger electrical conductivity.

Table 1 shows that the E_g of Si-doped BC₂NNT (configuration **B**) decreases by about 69.6 % after H₂CO adsorption. This will increase the conductivity of the tube according to Eq. 2. Compared with the pristine BC₂NNT, the Si₂-BC₂NNT may have H₂CO detection ability because of its suitable adsorption energy and conductivity change which may be converted to electrical signals. So we believe that Si doping process may be a strategy for improving the sensitivity of BC₂NNT to H₂CO, which cannot be trapped and detected by the pristine BC₂NNT.

Table 2 Calculated adsorption energy of a H_2CO (E_{ad} , kcal mol⁻¹), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), Fermi level energies and HOMO-LUMO energy gap (E_g) for pristine and Si doped BC₂NNT at M06/6-31G(d). Energies are in eV

System	E _{ad}	$^{a}Q_{T}\left(e ight)$	E _{HOMO}	E _F	E _{LUMO}	Eg	$^{b}\Delta E_{g}(\%)$
BC ₂ NNT	_	_	-5.75	-4.21	-2.68	3.07	_
H ₂ CO/BC ₂ NNT	-1.8	0.053	-5.71	-4.19	-2.67	3.04	-1.0
Si ₁ -BC ₂ NNT	_	—	-5.63	-4.17	-2.71	2.92	-
А	-4.2	0.078	-5.65	-4.16	-2.68	2.97	+1.7
Si ₂ -BC ₂ NNT	_	_	-5.59	-4.17	-2.76	2.83	-
В	-25.2	0.237	-5.38	-4.79	-4.20	1.18	-58.3

^a Q is defined as the average of total Mulliken charge on the molecule

^b The change of HOMO-LUMO gap of tube after H₂CO adsorption

Table 3	Calculated adsorption	energy of a H ₂ CO (E	_{ad} , kcal mol ⁻¹), HOM	O energies (E _{HOMO})	, LUMO energies (E ₁	LUMO), Fermi level en	ergies and
HOMO-	LUMO energy gap (E	g) for pristine and Si d	oped BC ₂ NNT at B3	LYP/6-311++G(d,p)	. Energies are in eV		

System	E _{ad}	$^{a}Q_{T}\left(e ight)$	E _{HOMO}	E _F	E _{LUMO}	Eg	$^{b}\Delta E_{g}(\%)$
BC ₂ NNT	_	_	-5.67	-4.37	-3.07	2.60	_
H ₂ CO/BC ₂ NNT	-1.01	0.045	-5.50	-4.25	-3.00	2.50	-3.8
Si ₁ -BC ₂ NNT	_	_	-5.54	-4.31	-3.09	2.45	-
А	-3.5	0.084	-5.56	-4.32	-3.08	2.48	+1.2
Si ₂ -BC ₂ NNT	_	_	-5.51	-4.32	-3.13	2.38	-
В	-24.1	0.174	-5.32	-4.94	-4.57	0.75	-68.5

^a Q is defined as the average of total Mulliken charge on the molecule

^b The change of HOMO-LUMO gap of tube after H₂CO adsorption

As mentioned in H2CO adsorption on pristine BC2NNT, Zhang et al. [35] by using the generalized-gradient approximation functional with the Perdew-Wang functional (PW91) have shown that the E_{ad} of H₂CO on the BNNT dramatically increased from 1.2 to 42.0 kcal mol⁻¹ after Si doping. They found that Si doping can also improve the sensitivity of BNNT toward H₂CO. Unlike BNNT, in which both forms of Si_N-BNNT and Si_B-BNNT can detect H₂CO, we have shown that just one form of Sidoped BC₂NNT (Si₂-BC₂NNT) is sensitive toward the target molecule.

Finally, we have explored the effect of DFT functional, basis set and tube length on the obtained results. The dispersion term to the total energy may give a non-negligible contribution, especially in the calculation of the H₂CO physisorption. Therefore, we have repeated all of the energy calculations, using dispersion corrected functional M06 [38] with the same basis set. The results were summarized in Table 2, showing that the E_{ad} values of M06 are somewhat more negative than those of the B3LYP, especially in the two cases of weak interactions (H₂CO/BC₂NNT and **A**). It may be due to the fact that the M06 includes dispersion interactions. As shown in Table 2, the energies of HOMO, LUMO and Fermi level slightly changed by changing the functional. It was found that the E_g values depend on the type of functional method.

As seen in Table 2, although the calculated values of Eg for the studied systems using M06/6-31G(d) are somewhat larger than the results of B3LYP, both functionals indicate that the E_{g} of Si₂-BC₂NNT significantly changes after formaldehyde adsorption (configuration B). Also, the results of a larger basis set (6-311++G(d,p)) in Table 3 show that the effect of basis set is less than that of functional. In addition, we have repeated the calculations on a longer BC2NNT constructed of 40 B, 40 N and 80 C atoms where its optimized length with the B3LYP functional and 6-31G(d) basis set is about 20.11 Å. The results indicated that the change in length has insignificant influence on the energy values. The calculated $E_{\rm g}$ for this tube is about 2.54 eV which is slightly smaller than that of the shorter tube (2.57 eV). Overall, in contrast to the used method and basis set, the effect of tube length may be negligible on the obtained results.

Conclusions

The geometric structures and electronic properties of the pristine and different Si-doped BC₂NNTs were explored in the presence and absence of an H₂CO molecule using DFT calculations. It was found that the H₂CO molecule weakly interacts with the pristine BC₂NNT, but it presents much higher reactivity toward the Si-doped BC₂NNT. E_{ad} on the pristine tube is about -0.8 kcal mol⁻¹, while it is about -3.3 to -23.2 kcal mol⁻¹ on the doped tubes at B3LYP/6-31G(d).

Based on DOS analysis, it was suggested that Si-doped BC_2NNTs may be used as a H_2CO gas sensor. BC_2NNT in which a C_2 atom is substituted by a Si one is more favorable for H_2CO adsorption.

References

- Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351–1357
- 2. Politzer P, Murray J, Lane P, Concha M, Jin P, Peralta-Inga Z (2006) J Mol Model 12:528
- 3. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Coord Chem Rev 254:1117–1134
- 4. Beheshtian J, Peyghan AA, Bagheri Z (2012) Phys E 44:1963-1968
- Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) J Mol Model 19:255–261
- Beheshtian J, Peyghan AA, Bagheri Z (2012) Monatsh Chem/Chem Mon 143:1623–1626
- Li Z, Jia Z, Luan Y, Mu T (2008) Curr Opinion Solid State Mater Sci 12:1–8
- 8. Lim SH, Luo J, Ji W, Lin J (2007) Catal Today 120:346-350
- 9. Blase X, Charlier JC, De Vita A, Car R (1997) Appl Phys Lett 70:197–199
- Baei MT, Peyghan AA, Bagheri Z (2013) Solid State Commun 159:8–12
- Ahmadi Peyghan A, Hadipour N, Bagheri Z (2013) J Phys Chem C 117:2427–2432
- Rossato J, Baierle RJ, Orellana W (2007) Phys Rev B 75:235401– 235407
- Sen R, Satishkumar BC, Govindaraj A, Harikumar KR, Gargi R, Zhang JP, Cheetham AK, Rao CNR (1998) Chem Phys Lett 287:671–676
- Redlich P, Loeffler J, Ajayan PM, Bill J, Aldinger F, Rühle M (1996) Chem Phys Lett 260:465–470
- Bai XD, Guo JD, Yu J, Wang EG, Yuan J, Zhou WZ (2000) Appl Phys Lett 76:2624–2626
- Raidongia K, Jagadeesan D, Upadhyay-Kahaly M, Waghmare UV, Pati SK, Eswaramoorthy M, Rao CNR (2008) J Mater Chem 18:83–90
- Korpan YI, Gonchar MV, Sibirny AA, Martelet C, El'skaya AV, Gibson TD, Soldatkin AP (2000) Biosens Bioelectron 15:77–83
- Zhou KW, Ji XL, Zhang N, Zhang XR (2006) Sensors Actuators B 119:392–397
- Feng L, Liu YJ, Zhou XD, Hu JM (2005) J Colloid Interface Sci 284:378–382
- Herschkovitz Y, Eshkenazi I, Campbell CE, Rishpon J (2000) J Electroanal Chem 491:182–187
- 21. Dai J, Giannozzi P, Yuan J (2009) Surf Sci 603:3234-3238
- Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416– 125421
- Wehling TO, Noveselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Nano Lett 8:173–177
- Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105– 232107
- 25. Carrillo I, Rangel E, Magaña LF (2009) Carbon 47:2752-2754
- 26. Becke AD (1988) Phys Rev A 38:3098–3100
- 27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
- Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (2004) J Comput Chem 14:1347–1363

- 29. Chen L, Xu C, Zhang XF, Zhou T (2009) Phys E 41:852–855
- Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653–2658
- Beheshtian J, Peyghan AA, Bagheri Z (2012) Sensors Actuators B Chem 171–172:846–852
- Beheshtian J, Soleymanabadi H, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2343–2348
- 33. Boys SF, Bernardi F (1970) Mol Phys 19:553-566

- Olmsted J, Williams GM (1997) Chemistry: the molecular science. WCB, Dubuque, IA
- 35. Wang R, Zhu R, Zhang D (2008) Chem Phys Lett 467:131-135
- 36. Wang X, Liew KM (2011) J Phys Chem C 115:10388-10393
- Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, Heidelberg
- 38. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101-194118